Melikyan algebra is a deformation of a Poisson algebra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melikyan algebra is a deformation of a Poisson algebra

We prove, using computer, that the restricted Melikyan algebra of dimension 125 is a deformation of a Poisson algebra.

متن کامل

Lie - Poisson Deformation of the Poincaré Algebra

We find a one parameter family of quadratic Poisson structures on R 4 × SL(2, C) which satisfies the property a) that it is preserved under the Lie-Poisson action of the Lorentz group, as well as b) that it reduces to the standard Poincaré algebra for a particular limiting value of the parameter. (The Lie-Poisson transformations reduce to canonical ones in that limit, which we therefore refer t...

متن کامل

On dimensions of derived algebra and central factor of a Lie algebra

Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.

متن کامل

Deformation of Algebra Factorisations

A deformation theory of algebras which factorise into two subalgebras is studied. It is shown that the classification of deformations is related to the cohomology of a certain double complex reminiscent of the Gerstenhaber-Schack complex of a bialgebra.

متن کامل

A Bound for the Nilpotency Class of a Lie Algebra

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2014

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/532/1/012019